The early stage of folding of villin headpiece subdomain observed in a 200-nanosecond fully solvated molecular dynamics simulation.
نویسندگان
چکیده
A new approach in implementing classical molecular dynamics simulation for parallel computers has enabled a simulation to be carried out on a protein with explicit representation of water an order of magnitude longer than previously reported and will soon enable such simulations to be carried into the microsecond time range. We have used this approach to study the folding of the villin headpiece subdomain, a 36-residue small protein consisting of three helices, from an unfolded structure to a molten globule state, which has a number of features of the native structure. The time development of the solvation free energy, the radius of gyration, and the mainchain rms difference from the native NMR structure showed that the process can be seen as a 60-nsec "burst" phase followed by a slow "conformational readjustment" phase. We found that the burial of the hydrophobic surface dominated the early phase of the folding process and appeared to be the primary driving force of the reduction in the radius of gyration in that phase.
منابع مشابه
Common structural transitions in explicit-solvent simulations of villin headpiece folding.
Molecular dynamics simulations of protein folding can provide very high-resolution data on the folding process; however, due to computational challenges most studies of protein folding have been limited to small peptides, or made use of approximations such as Gō potentials or implicit solvent models. We have performed a set of molecular dynamics simulations totaling >50 micros on the villin hea...
متن کاملSub-microsecond protein folding.
We have investigated the structure, equilibria, and folding kinetics of an engineered 35-residue subdomain of the chicken villin headpiece, an ultrafast-folding protein. Substitution of two buried lysine residues by norleucine residues stabilizes the protein by 1 kcal/mol and increases the folding rate sixfold, as measured by nanosecond laser T-jump. The folding rate at 300 K is (0.7 micros)(-1...
متن کاملDynamic folding pathway models of the villin headpiece subdomain (HP-36) structure
We have investigated the folding pathway of the 36-residue villin headpiece subdomain (HP-36) by action-derived molecular dynamics simulations. The folding is initiated by hydrophobic collapse, after which the concurrent formation of full tertiary structure and alpha-helical secondary structure is observed. The collapse is observed to be associated with a couple of specific native contacts cont...
متن کاملPathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution.
An implementation of classical molecular dynamics on parallel computers of increased efficiency has enabled a simulation of protein folding with explicit representation of water for 1 microsecond, about two orders of magnitude longer than the longest simulation of a protein in water reported to date. Starting with an unfolded state of villin headpiece subdomain, hydrophobic collapse and helix f...
متن کاملFolding free-energy landscape of villin headpiece subdomain from molecular dynamics simulations.
High-accuracy ab initio folding has remained an elusive objective despite decades of effort. To explore the folding landscape of villin headpiece subdomain HP35, we conducted two sets of replica exchange molecular dynamics for 200 ns each and three sets of conventional microsecond-long molecular dynamics simulations, using AMBER FF03 force field and a generalized-Born solvation model. The prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 17 شماره
صفحات -
تاریخ انتشار 1998